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PREFACE

Although the value of performing simulation analyses
for the design and evaluation of military and aerospace
computer systems is recognized, and designers and users
of such systems often desire to employ this tool, the dif-
ficulty and expense of developing sufficiently detailed
models is often prohibitive. The Air Force, in particular,
requires a powerful and flexible simulation capability to
evaluate present and proposed systems. Accordingly, we
have developed the Extendable Computer System Simulator
(ECSS) to permit system models to be built more rapidly
and at less cost than previously possible. Although the
original development of ECSS was sponsored by NASA, work
on it was continued under Air Force Project RAND. It has
a particular relevance to work being done for the Air Force
Logistics Command on the large hardware/software effort
contained in the Advanced Logistics System (ALS).

ECSS is a special-purpose language for computer sys-
tem modeling. The original design is presented in N. R.
Nielsen, ECSS: An Extendable Computer System Simulator,
The RAND Corporation, RM-6132-NASA, February 1970. The
present Report discusses Rand experience with the ini-
tial version of the language, outlines its strengths and
weaknesses; and offers some general principles for im-
proving the language with respect to user capability and
convenience.

This Report should be of interest to potential users
of ECSS and to other designers of computer system modeling
languages. The reader should be familiar with computer
system concepts and terminology, and with discrete-event
simulation. Some knowledge of SIMSCRIPT II programming
language is required to completely understand the ECSS

example program in Appendix B.
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SUMMARY

A prototype version of the Extendable Computer System
Simulator (ECSS) has been implemented to aid in constructing
simulation models of computer systems. A specialized lan-
guage is used to describe hardware, software, and system
load. A service-routine package handles many of the house-
keeping details of model control. The full power of
SIMSCRIPT II is also available for extending ECSS capabil-
ities. Advantages of ECSS over other languages include its
natural, English-like input format, provisions for compact
description of common computing system elements and opera-
tions, flexibility, extendability, modifiability, and pro-
visions for economical simulation reruns.

Some weaknesses in the provided facilities have been
noticed, however, in that certain features are either
absent or less convenient than they should be. Summary
reports of model structure, for example, are not produced,
nor are statistics on model operation collected or reported.
The user finds some mechanisms not as accessible or con-
trollable as sometimes needed. Moreover, certain control-
program models require a very awkward representation with-
in ECSS.

Reflection on the strengths and weaknesses of this
ECSS prototype stimulated a list of design factors for
computer system simulators. Some consjiderations are:

1) declarative model specification is more convenient, but
procedural specification more flexible; 2) powerful state-
ments allow quick development of coarse models, but a number
of simpler statements are required for more finely detailed
models; 3) a service-routine executive must be easily
accessible to allow the adaptability required of a computer
system simulator; and 4) certain information is of interest
in all computer system simulations and should be available

on demand as preformatted reports from the simulator.
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I. INTRODUCTION

The Extendable Computer System Simulator (ECSS) is a
prototype language, designed and implemented to investigate
ways of making the simulation of complex computer systems
a less formidable task. The need for a new language, free
from the problems of using general-purpose languages and
the drawbacks of existing computer system simulators was
demonstrated in Neilsen, 1970 [l1]. Our approach is to pro-
vide a convenient and natural means of describing computer
system characteristics and computing processes while allow-
ing the flexibility and power of a general-purpose simula-
tion language.

Experience with several small models, written to test
the initial version of the simulator, has indicated the
soundness of the approach. In most cases, the models have
been quickly and easily constructed. However, situations
have also been found in which the language is not as use-
ful as possible, revealing shortcomings in both the breadth
and versatility of the facilities provided.

This Report describes the current capabilities of ECSS,
discusses ECSS strengths and weaknesses, and prescribes some
directions for further work. We first review the concepts
of the language, and list the advantages of the ECSS ap-
proach. We then outline a number of cases where the current
version of the language is not as helpful as it could be.
Finally, we present several general principles, which have
become clearer in retrospect, for the design of computer
system modeling languages. Two appendices show the details
of ECSS program processing, and provide a specific example
of a complete ECSS simulation program.



IT. REVIEW OF ECSS

Three elements of ECSS are fundamental in describing
a computer system to be simulated: 1) the System Descrip-
tion section; 2) the Load Description section; and 3) the

Service Routines.

SYSTEM DESCRIPTION

The System Description characterizes those system
elements considered static in ECSS. Static elements are
called devices, reflecting their usagé as models of pieces
of hardware. Declarations in this section specify the
number of the various types of hardware, the names of
these devices and names of groups of devices, the capacities
and capabilities of the devices, the interconnection of de-
vices, and the possible "software execution time overhead"
incurred by simulated operation of some devices in perform-
ing certain operations.

To model different types of hardware, the user speci-
fies ECSS devices to have the appropriate characteristics.
All devices are viewed as collections of up to four
components (see Fig. 1), and different device character-
istics result from using different combinations of com-
ponents. Each type of component represents a different
device capability. For some hardware models the conjunc-
tion of several components may be meaningful, e.g., in
defining a central processor to execute instructions,
transmit data, and have core storage; but often, only one
component is important, e.g., in defining a disk memory
as only a guantity of storage space. The user may choose
the combination of components necessary to model real
equipment.

Device characteristics are further specified by set-
ting parameters of the components. Each type of component

has different parameters according to that component's
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Fig. 1--ECSS Device Components

intended purpose. Some of these parameters are: 1) for
Storage Space, the maximum amount; 2) for Execution, the
instruction processing rate and maximum number of jobs that
may be processed concurrently; 3) for Allocatable, whether
a device may be allocated to more than one job simultan-
eously; and 4) for Transmission, the maximum data rate,
number of simultaneous data streams that may be transmitted,
delay per transmission, and others. There are also several

parameters of interaction between components. Two of these



are software overhead times, used to model the software
execution necessary to initiate data transmission or de-
vice allocation, and degradation factors, used to account
for execution interference due to data transmission.
Besides characterizing individual devices, the System
Description may define groups of devices. Groups are used
for compact description (e.g., defining several devices
having the same characteristics) and for automatic device
selection at run time. Device selection is a feature of
the built-in ECSS "operating system" that allows a group
of devices to be put in a load command. This indicates that
the actual device picked to handle the command should be
the one available at any particular time during the run.
The last function of the System Description is definition

of certain data transmission paths within the system.

LOAD DESCRIPTION

The Load Description specifies the system's dynamic
behavior. The load on a computer system is the work it
must do, where "work" means the utilization of device com-
ponents for certain time spans. Special programs in this
section, called jobs, simulate the work of real application
and control program processing by indicating sequences of
hardware utilization commands.

Nearly any kind of deterministic or random effects
may be included in a job to describe which activities are
to be done, for how long, and in what order. The sequence
is controlled by the testing, branching, looping, and other
logical properties of the job. The simulated time at which
a command is issued depends on the time necessary to do the
work of the previous commands, and on any conditional de-
lays within the job. Appendix A presents a general example
of the progress of simulated time in a job.

The logical behavior of jobs is provided by appropriate
SIMSCRIPT II statements. SIMSCRIPT and ECSS statements may be



freely intermixed in job descriptions. In fact, the full
capability of this general simulation language (described
in Kiviat, Villanueva, and Markowitz, 1968 [2]) is avail-
able as a subset of ECSS. New data structures may be
created and used in the model, for example, to expand the
description of the state-of-the-system or new routines
written to incorporate complex system-control logic.

Simulation time in processing ECSS commands results
from two situations. First, the use of certain device
components is explicitly time-consuming; for example,
executing instructions as directed by an EXECUTE command,
and data transmission as specified by a SEND/RECEIVE state-
ment. Second, some commands may or may not allow time to
pass, depending on the state-of-the-system. Examples are
conditional delays, indicated by WAIT or HOLD statements,
which depend on whether the condition has come true at
the time the statement is processed. Requests for storage
space or for device allocation, GET and ALLOCATE respec-
tively, may cause delay because that component is already
being utilized, and the job must wait for it to become free.
Execution or transmission commands may also involve this
kind of delay if those components are busy. Priority-
ranked queues are associated with each component of a de-
vice to keep track of pending requests. Marking the end
of utilization of a component, e.g., with a FREE space or
a DEALLOCATE statement, usually does not hold up job
processing.

Several other load commands take zero time, but serve
to define the jobs and their initiation. These include
JOB--marking the beginning of a job, LAST--marking the end,
START--commanding job initiation, and INITIALLY START--
directing exogenous job-starting to simulate the system

environment.



SERVICE ROUTINES

The Service Routines take care of the housekeeping
details of internal model control. A collection of
SIMSCRIPT II subprograms is used by ECSS to implement the
actions specified by the Load Description. The event-
scheduling and process-pointer management necessary to
realize the flow-orientation of jobs within a SIMSCRIPT II
context are included. All the system-state updating
associated with the interaction of jobs and devices, jobs
and jobs, and devices and devices are incorporated in
these subprograms.

Moreover, this package of routines supplies a number
of such operating-system functions as resource allocation
by priority; I/O interrupt handling; device selection from
groups; and queueing, dequeueing, and retrial of device
requests. These capabilities allow easy specification of
multiprogramming, multiprocessing, real-time processing,
and conversational transmissions. The ECSS user auto-
matically gets these capabilities when defining his model's
dynamics.

Appendix B describes a complete ECSS simulation, which
illustrates the use of ECSS in modeling a specific system,
and shows the form and structure of a typical ECSS program.
It also demonstrates the usage of SIMSCRIPT II statements
within ECSS.



ITI. ADVANTAGES OF THE ECSS APPROACH

NATURAL INPUT LANGUAGE

Both ECSS and SIMSCRIPT II statements are English-like,
and their procedural format allows a clear and flexible
design. The user may incorporate his own definitions for
various dimensional units. Considerable freedom for mnemonic
names of devices, jobs, variables, events, etc., is allowed.

Use of a natural, computer-system-oriented input lan-
guage also enhances ECSS as a communication and documenta-
tion tool. Explaining an ECSS model is much easier than
explaining one written in an assembly-style language, or a
higher-level language not specifically designed for computer
system models.

PROVISION OF DECLARATIONS AND COMMANDS FOR COMMON
COMPUTER SYSTEM OPERATIONS

Hardware elements are compactly defined and described
in the System Description, and a variety of utilization
commands for describing loads are provided. Requests for
storage space, job starting, execution, and data trans-
mission require only single statements. The Service Routines
assume much of the modeling burden by handling the details

and providing the built-in operating-system capabilities.

FLEXIBILITY

ECSS provides a variety of techniques for modeling
systems. Both flow-oriented jobs and events can operate
on the system state, depending on the modeler's preference.
Jobs can model program behavior, system input character-
istics, or arbitrary activities running on any appropriate
device. The generality of devices, each having as many
as four components, allows the modeling of nearly any kind
of equipment. ©No particular structures are forced on the

user.



No particular level of detail is required of the model.
The example in Appendix B focuses on job-scheduling software
including space reservation, space release, and necessary
execution time, whereas I/0 interrupt handling, transmission
path selection, multiprogramming, and other control opera-
tions are left up to built-in ECSS functions. In other
models, these operations may be of interest and could be
modeled explicitly. Changes in detail are also readily in-
corporated into a given model.

EXTENDABILITY

ECSS and SIMSCRIPT statements are used in conjunction
to build simulation models. Provision of the data types
and procedural statements of SIMSCRIPT II allows the user
to go beyond the primary ECSS capabilities for any purpose.
In addition, the user may extend the definition of a de-
vice, a job, a transmission, or any other ECSS structure
by appropriate SIMSCRIPT preamble statements that add
attributes to these entities. New commands consisting of
combinations of SIMSCRIPT and ECSS statements may be de-

fined as another means of extending ECSS capability.

MODIFIABILITY

For some simulation models, the user may wish to change
certain ECSS operations. A model may require different
disciplines for certain queues, or different job suspension/
reactivation criteria than are included in the standard
ECSS package. Such changes would require modification of
one or more of the Service Routines. This task is aided by
both the modularity of the Service Routines and their de-
scription in SIMSCRIPT II. The source code for any of
these routines is open to change. Of course, this requires
a fairly good knowledge of the internal working of ECSS,
but the clarity of the SIMSCRIPT code makes change much

easier than if the user had to cope with assembly language.



RERUN ECONOMY

Simulation models are usually rerun a number of times,
both during development (to debug, test, and validate the
model) and in production (to investigate behavior under
various conditions). ECSS is constructed to avoid recom-
pilation of the model for each run. First, it produces a
summary deck of the static system description, which allows
changing system parameters without reprocessing the System
Description. Second, the object decks representing the
jobs, events, functions, and other routines written by the
user are available for subsequent runs. Finally, the
system and load are independent of each other with respect
to system parameters (e.g., CPU speed, number of disks,
etc.). This allows different systems and loads, which
were not originally processed together, to be combined
later as summary decks and object modules, again avoiding
the overhead of recompilation.
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IV. WEAKNESSES OF ECSS

ECSS is weak in some areas in the sense that certain
capabilities are less convenient or less flexible than they
should be. Although it is possible to model nearly any
system in ECSS with the help of SIMSCRIPT II, the user must
still work harder than he should have to for certain classes
of operations. Implementation aspects, e.g., running-speed
and core-storage requirements, are of secondary importance
at this stage, and are not discussed here.

The difficulty in coping with weaknesses varies con-
siderably. Least difficult is writing extra SIMSCRIPT II
routines, not involving ECSS system variables, to include
some operation not specifically in the ECSS language.
Manipulating ECSS system variables outside the Service
Routines is moderately difficult because a knowledge of the
function and use of these variables within those routines
is required. Most difficult is changing the Service
Routines because this demands an intimate knowledge of
their working and interaction. We describe examples of

some noticeable problems.

NEGLECTED STATEMENTS AND CAPABILITIES

Certain features should be included in a computer sys-
tem simulator that have not been incorporated in this first
version of ECSS. Formulating a complete set of these
features is still difficult, but a few have become apparent.
For example, although all data are available to the user,
no statistics are automatically collected or reported by
ECSS. Such things as device utilization, average waiting
time in queues, and average dqueue length are nearly always
of interest in computer simulations. These statistics
should be collected and perhaps produced on demand as a
summary report. Also convenient would be a summary of the

static system simulated because the System Description may
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be quite complex if hierarchical groups are used. Another
desirable feature would be a built-in technique for stop-
ping and restarting a model at any point, perhaps to allow
parametric changes, or to account for initialization periods.
There is, furthermore, very little consistency checking of
the model at translation time or run time. ECSS should do
more to flag self-contradictory or illogical System
Descriptions.

Several common computer operations now must be modeled
in SIMSCRIPT II, and probably deserve specific ECSS state-
ments to handle them. A statement to change job priorities
during their run would contribute convenience and clarity
to a model, particularly when simulating such operating-
system functions as task scheduling or interrupt masking.
Another missing capability is data-file placement on storage
devices for file-access modeling. Although files may now |
be placed on specific devices, or allocated from groups of
devices, it would be quite handy to have statements indi-
cating file position on a device for calculation of vari-
able access times for sequences of transmissions from
different files on the same device. A third deficiency is
lack of built-in polling operations. All service requests
are handled in a priority-interrupt fashion in ECSS. How-
ever, many applications require these requests to be handled
differently. For example, remote terminals are often polled
in a particular order to determine their transmission status,
rather than each signaling the receiver through an interrupt
mechanism. Incorporation of arbitrary (or changing) servicing
order in models would be expedited by ECSS statements that

specifically simulate polling.

HARD-TO-GET-AT MECHANISMS

Control of mechanisms invoked only by declaration is

sometimes desired in the Load Description. One instance is
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the degradation of instruction execution rate as declared by
a DEGRADES clause in the System Description. Reductions

in execution rate may occur for other reasons than trans-
mission interference. Multiple CPUs contending for the

same core memory will generally not run as fast as if only
one CPU had access to the memory. The degradation mechanism
could easily handle such cases if the user had more direct
control over it when specifying jobs.

Software overhead is another declarative feature that
could be more accessible. In the batch model, allocation
takes 50 msec of overhead time, but a variety of other
activities~-job initiation, task switching, or core stor-
age reservation--may also take time that should be counted
as overhead. Hence, the user should be able to indicate
overhead time for a variety of operating system functions,
or perhaps at any time he wishes, to realize greater utility

of the overhead accumulation procedures.

OVER-AUTOMATICITY

The user may also need greater control over the func-
tions of Load Description statements. Sometimes these
statements automatically do more than the user desires.
When acquiring simulated storage space, for example, the
ECSS GET statement not only finds and reserves space, but
also causes the requesting job to wait for space if enough
is not available at request time. One may instead want to
return to processing with a note indicating an unsuccessful
request if sufficient space is not available. That is, one
may wish only to use those parts of GET that find the maxi-
mum amount of space available and compare it to the amount
required, and not the part that queues unsuccessful re-
quests for retrial.

A similar problem also occurs when SENDing data. It

is possible to specify that a message be conveyed from one
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job to another by means of a data transmission. These
messages are often used to activate further processing of
jobs waiting for them. Instead of terminating and re-
starting a job, for example, it may be more realistic to
suspend and reactivate it by means of a "clock interrupt.”
This involves only the signaling features of the SEND
statement, all communication being within a processor, but
there is no way of simply signaling without all the path
selection and other data transmission machinery. Other
cases could be mentioned that illustrate a need to use only
part of the power of a Load Description statement.

AWKWARD CONTROL-PROGRAM REPRESENTATION

Although the automatic operating system is a great
help in some models, the distribution of control functions
between the Service Routines and user-written jobs makes
for a sometimes strained relationship between the model and
the real system being simulated. Jobs simulating control-
program functions may not interface smoothly with the de-
fault ECSS system, particularly if different algorithms
are desired for other kinds of queue handling, resource
management, or for controlling the order of occurrence of
internal model events. Low-level changes in these opera-
tions usually require extensive changes both to the Service
Routines and to the jobs representing the load's simulated
software. Moreover, the code implementing the new operating-
system functions may be scattered over parts of several
routines, thereby decreasing model clarity. It would be
desirable to keep most or all of user-specified control-
program models in one place, either through a number of

"operating-system-jobs" or some other unifying concept.
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V. DESIGN CONSIDERATIONS FOR FURTHER ECSS DEVELOPMENT

Pointing out weaknesses in something under development
is usually tantamount to saying how it will be improved.
Reflection on these weaknesses has indicated some general
principles in designing computer system simulation lan-
guages that may be used to anticipate and correct dif-
ficulties before they intrude into some new application of

the language.

DECLARATIVE VERSUS PROCEDURAIL DESCRIPTION

Although declarative specification of system features
is most convenient, procedural specification is more flex-
ible. Because one cannot anticipate all possible types of
interaction, all interaction mechanisms should be accessible
to procedural control so that the user can make the fullest
use of provided capabilities. Declarative specifications
should be retained, however, for their convenience, and
perhaps even expanded to further parameterize the built-
in operating system (e.g., more opportunities for overhead

time specification).

STATEMENT SCOPE

Just as one cannot anticipate all possible interaction
types, one cannot foresee all the combinations of ways to
command the system components. Variable sophistication of
detail requires greater user control over the actions of
the Load Description statements. Powerful statements, in-
corporating a number of operations in a predetermined
sequence, are necessary to quickly develop coarse models.
For more detailed models, each operation should be avail-
able separately. Control at a lower functional level
allows the same Service Routine mechanisms to be arranged

in a greater number of ways without the chore of altering
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their structure. The inclusion of more optional clauses

for statements may ease the transition from coarse to fine
levels of detail during model development.

OPERATING--SYSTEM ACCESSIBILITY

Service Routine alteration could also be avoided by
inclusion of a number of exit points to user routines.
Such a "monitor" is now included, but operates as an
observer telling what the system did, not what it is about
to do. Substituting an active monitor, with the power to
skip some of the built-in operations on command, would
provide more flexible use of the ECSS operating-system

features.

AUTOMATIC SUMMARIES

A computer system should include automatic collection
of statistics, and automatic output of statistical and
other summaries, in addition to user access to all opera-
tions data. Certain quantities (e.g., device utilization,
queue lengths, etc.) are of known importance, and statistics
on them should be collected. Preformatted reports of these
statistics would provide a convenient overview of model
operation. Machine- and man-readable system structure
summaries could further make the simulation clearer to the
user, and aid in rerunning the model. Trace output should
also be available on demand (perhaps through the monitor),

but undesired volumes of operations data should be avoided.
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VI. CONCLUSION

Use of the initial version of ECSS has shown it to be
a convenient and powerful analysis tool. Its provisions
for describing both common computing system elements and
operations ease much of the modeling burden; its extenda-
bility and modifiability insure suitability for uncommon
applications. Further developments on the prototype are

proceeding as outlined in this Report.
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Appendix A

ECSS JOB PROCESSING

An ECSS job is a specification of a sequence of ac-
tivities. An activity is the utilization of a simulated
device for some amount of simulated time as directed by
a hardware utilization command. Hence, the simulation
clock may advance during the processing of a job. Figure 2
illustrates the concept of job processing and the effect
of logical statements and conditional delays on the pro-
gress of simulated time within a job.

One may think of a process-pointer moving through a
job, indicating which statement is being processed. In
Fig. 2, the job SHOW.TIMING is initiated at to, and the
pointer starts at the first statement. This happens to
be a command that takes time tys so processing does not
proceed to the next statement until time to + tl. Logical
statements may then redirect the process-pointer: If
VARIABLE > 0, then processing jumps to the point labeled
'NEXT' in the job (right-hand time column); otherwise,
Commands 2 and 3 are processed (left-hand time column),
requiring t, + t; more simulated time to pass. Conditional
delays may suspend job processing. The process-pointer
will not go beyond the HOLD statement until "input" has
arrived at tin' but if input has already arrived, proces-
sing will proceed directly to Command 4. This flow-
orientation of jobs, resembling GPSS [3], is extremely

useful in modeling computer system loads.
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Appendix B

AN EXAMPLE OF THE ECSS APPROACH

This appendix presents a simplified model of a multi-
programmed batch-processing system to illustrate the
structure and operation of an ECSS simulation program.
This example has not been constructed to demonstrate good
system design.

Figure 3 shows the system hardware configuration. A
processor connects through three I/0 ports to a cardreader
and two controllers that in turn are connected to four
disks. The system's load consists of disk file updating
routines, a sequence of which are entered by means of the
cardreader. The flow of tasks through the system is
diagrammed in Fig. 4. In addition, some simulated soft-
ware is included in the load to schedule jobs according
to their space requirements and to handle disk allocation.

Figure 5 lists the model's entire simulation program.
Some comments appear in parenthesis; each statement has
been numbered; and SIMSCRIPT statements are marked with
an (S). Besides the System and Load Descriptions men-
tioned above, the listing shows a preamble, a definition-
description section, some events, and the MAIN routine.
The preamble (statements 1-11) defines global variables
and other data structures to be used in the model. The
definition section (12-15) is an additional ECSS element
that allows relation of user-defined terms to basic ECSS
terms (with possible conversion factors) for use in the
System and Load Descriptions. Because no statistics are
collected or reported by ECSS, the event OBSERVATION (24-29)
is used in this program to view the system every five
seconds, and to print a record of its activity. QUITSIM
(statement 30) halts the simulation. Finally, the MAIN
routine (31-35) indicates when to stop and when to make
the first observation. It then directs the simulator to

commence.
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Fig. 4--Work Flow Through Multiprogrammed Batch Processor
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PREAMBLE (defines global variables-and data structures)
DEFINE TOTAL.IN.TIME AS A REAL VARIABLE
DEFINE JOBS.STARTED, JOBS.COMPLETED, JOBS.IN.PROCESS
AS INTEGER VARIABLES
TEMPORARY ENTITIES
EVERY JOB.DESCRIP HAS A SPACE.REQMT, A LOOP.REQMT
AND A TIME.IN AND BELONGS TO THE JOB.QUEUE
DEFINE SPACE.REQMT, TIME.IN AS REAL VARIABLES
DEFINE LOOP.REQMT AS AN INTEGER VARIABLE
THE SYSTEM OWNS A JOB.QUEUE
DEFINE JOB.QUEUE AS A SET RANKED BY HIGH SPACE.REQMT
EVENT NOTICES INCLUDE OBSERVATION,QUITSIM
END

DEFINITION DESCRIPTION (incorporates user terminology)
DEFINE UNITS KBYTES=1000 TRANSMISSION.UNITS,
KWORDS=SPACE.UNIT
DEFINE UNITS SUBROUTINES=400 INSTRUCTIONS
END

SYSTEM DESCRIPTION (defines characteristics of each
class of devices)
SPECIFY 1 PROCESSOR,
EXECUTES 200 INSTRUCTIONS PER MILLISECOND
(execution rate)
TRANSMITS 2000 KBYTES PER SECOND (transmission rate)
HAS CAPACITY OF 3 TRANSMISSION USERS (models
3 subchannels)
CONNECTS TO CONTROLLERS
DEGRADES PROCESSOR BY 10% PER 200 KBYTES/SECOND
(models cycle-stealing)
HAS CAPACITY OF 256 KWORDS (storage space)
ALLOCATES DISKS IN 50 MS (models gross software effect)

SPECIFY 2 CONTROLLERS, EACH
HAS CAPACITY OF 1 TRANSMISSION USER
CONNECTS TO DISKS,PROCESSOR

SPECIFY 4 PUBLIC DISKS, EACH
HAS CAPACITY OF 1 TRANSMISSION USER
ABSORBS 922.5 MILLISECONDS PER MESSAGE (access time)
TRANSMITS 156 KBYTES PER SECOND (disk transmission rate)
CONNECTS TO CONTROLLERS

SPECIFY 1 CARD.READER, CONNECTS TO PROCESSOR

PATH OUTPATH IS PROCESSOR,CONTROLLERS, DISKS
PATH INPATH IS DISKS,CONTROLLERS,PROCESSOR
END

EVENT OBSERVATION SAVING THE EVENT NOTICE
RESCHEDULE THIS OBSERVATION IN 5 UNITS (seconds)
LET AVG,TURNAROUND=TOTAL.IN.TIME/JOBS.COMPLETED
(calculate statistics)
LET AVG.THRUPUT=JOBS.COMPLETED/TIME.V
LIST TIME.V,JOBS.STARTED,JOBS.IN.PROCESS,JOBS.COMPLETED,
AVG.TURNAROUND ,AVG.THRUPUT (print out statistics)
END

EVENT QUITSIM STOP END

Fig. 5--Batch Processor Simulation
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MAIN
SCHEDULE A QUITSIM AT 35
SCHEDULE AN OBSERVATION AT 5
START SIMULATION

END

LOAD DESCRIPTION

(defines sequences of system utilization commands)
JOB READER

CREATE A JOB.DESCRIP

LET SPACE.REQMT (JOB.DESCRIP)=EXPONENTIAL.F(104.0,1)

READ LOOP.REQMT (JOB.DESCRIP)

LET TIME.IN(JOB.DESCRIP)=TIME.V

ADD 1 TO JOBS.STARTED

FILE JOB.DESCRIP IN JOB.QUEUE

START JOB READER ON CARD.READER

IN EXPONENTIAL.F(12.0,1) SECONDS
LAST

JOB INITIATOR

IF JOB.QUEUE IS EMPTY,
START JOB INITIATOR ON PROCESSOR WITH PRIORITY 2 IN 1 SECOND
RETURN
ELSE

REMOVE THE FIRST JOB.DESCRIP FROM JOB.QUEUE

ADD 1 TO JOBS.IN.PROCESS

EXECUTE 100 INSTRUCTIONS (space reservation processing)

GET SPACE.REQMT (JOB.DESCRIP) CONTIGUOUS KWORDS FROM PROCESSOR

START JOB INITIATOR ON PROCESSOR WITH PRIORITY 2

EXECUTE 500 INSTRUCTIONS (job initiation processing)

START JOB APPLICATION (LOOP.REQMT (JOB.DESCRIP)) ON PROCESSOR
WITH PRIORITY 1 WAITING HERE FOR COMPLETION

FREE SPACE.REQMT (JOB.DESCRIP) KWORDS FROM PROCESSOR

SUBTRACT 1 FROM JOBS.IN.PROCESS

ADD 1 TO JOBS.COMPLETED

ADD TIME.V-TIME,IN{JOB.DESCRIP) TO TOTAL.IN.TIME

DESTROY THE JOB.DESCRIP

LAST

JOB APPLICATION (REQD.LOOPS)
DEFINE REQD.LOOPS AND L AS INTEGER VARIABLES
ALLOCATE DISKS# 1 AS INPUT.FILE
ALLOCATE DISKS AS OUTPUT.FILE
FOR L=1 TO REQD.LOOPS DO ...

RECEIVE RECORD '‘'BLOCK OF DATA'' OF LENGTH 800 FROM
INPUT.FILE VIA INPATH WAITING HERE FOR COMPLETION
(read data)

EXECUTE 10 SUBROUTINES (process data)

SEND RECORD OF LENGTH 160 TO OUTPUT.FILE VIA OUTPATH
WAITING HERE FOR COMPLETION (write data)

LOOP

DEALLOCATE INPUT.FILE
DEALLOCATE OUTPUT.FILE
LAST

INITIALLY START READER ON CARD.READER (initialize the system)

INITIALLY START INITIATOR ON PROCESSOR WITH PRIORITY 2
END

Fig. 5--Continued
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MODEL OPERATION

The ECSS job‘READER (37-45) models the input environ-
ment of the system. This consists of units of work sub-
mitted at exponentially distributed times, with a mean of
12 seconds. The work is characterized by its space re-
quirement, selected from an exponential distribution with
a mean of 104 (KWORDS) and a duration parameter, represented
as the number of simulated processing cycles, which is read
in from a data card. Work to be done is placed in a queue,
JOB.QUEUE, and ranked on its space requirement from high to
low. SIMSCRIPT II provides the definition and manipulation
statements for this queue. The use of JOB.QUEUE augments
the default ECSS job-scheduling procedures.

The prototype for the work to be done is the APPLICATION
job (64-75), which runs on the processor. First, one disk
is designated as the input source and one of the disks is
selected randomly (by the built-in ECSS operating system)
as the output unit by the ALLOCATE statements. This task
is considered to require 50 msec of overhead time per al-
location (from 17), and hence the processor's execution
component is busy for 100 msec as well as the allocatable
component of the disks being set. Because the disks are
PUBLIC, more than one job can use them simultaneously.

Next, the APPLICATION job begins the simulated reading
of blocks of data, processing of the data, and writing of
an output record (69-71). The RECEIVE statement picks a
free data path from the INPUT.FILE disk, through one of
the controllers, to one of the I/0 ports of the processor.
The job automatically waits for a free path if none is
available. Transmission components of these devices are
then busy for the duration of the disk access time
(92.5 ms), plus the time for transmission of 800 bytes
at 156 kbytes/sec (disk speed). APPLICATION job proces-
sing is suspended for that time, as directed by the
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WAITING clause (69). The processor execution component is
then busy simulating the execution time for 10 sets of 400
instructions (SUBROUTINES) at 200,000 instructions/second.
Finally, the SEND statement goes through a similar procedure
as the RECEIVE to model writing the output record. The
job's last action is to reset the allocation status of the
disks it used, i.e., free them, which takes no simulated
time in this model.

A scheduling algorithm is modeled in the INITIATOR job
(46-63). It starts APPLICATION jobs in the order determined
by the JOB.QUEUE, i.e., large jobs first (if the queue is
empty, an INITIATOR tries again in one second). Execution
time for scheduling is modeled with the first EXECUTE
statement (53). The GET statement (54) reserves a con-
tiguous block of the processor's storage space necessary
to satisfy the space requirement. If not enough space is
available, the INITIATOR job is suspended until space is
available. When space is reserved, another INITIATOR is
started (for the next JOB.QUEUE work unit) and some execu-
tion time, representing job initiation bookkeeping, is
called for (55-56). Following that, an APPLICATION job is
started on the processor, passing its du:ation as an
argument. Upon completion, the INITIATOR proceeds to re-
lease the space for that unit of work (58), and terminates.

Several INITIATOR and APPLICATION jobs may be running
concurrently on the processor in a multiprogrammed fashion.
Contention for devices is resolved by priority (note that
INITIATOR jobs with priority 2 will always get a device
before an APPLICATION job), then by time of request. This
is performed by the Service Routines. Scattered through-
out the jobs are various SIMSCRIPT II statements that
collect the data periodically reported by the OBSERVATION
event. Figure 6 shows some typical output from this simu-

lation program.
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